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Abstract. Automatically recognizing emotional intent using facial ex-
pression has been a thoroughly investigated topic in the realm of com-
puter vision. Facial Expression Recognition (FER), being a supervised
learning task, relies heavily on substantially large data exemplifying var-
ious socio-cultural demographic attributes. Over the past decade, several
real-world in-the-wild FER datasets that have been proposed were col-
lected through crowd-sourcing or web-scraping. However, most of these
practically used datasets employ a manual annotation methodology for
labelling emotional intent, which inherently propagates individual demo-
graphic biases. Moreover, these datasets also lack an equitable represen-
tation of various socio-cultural demographic groups, thereby inducing
a class imbalance. Bias analysis and its mitigation have been investi-
gated across multiple domains and problem settings; however, in the
FER domain, this is a relatively lesser explored area. This work lever-
ages representation learning based on latent spaces to mitigate bias in
facial expression recognition systems, thereby enhancing a deep learning
model’s fairness and overall accuracy.
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1 Introduction

Facial expression recognition (FER) has been an extensively explored problem
in the field of deep learning and computer vision. In the past decade, numer-
ous proposed FER datasets have made it easier to approach facial expression
recognition as a supervised deep-learning task. Deep learning requires large and
diverse datasets for efficaciously modelling data distribution. However, such a
supervised learning strategy necessitates substantial training data that reflects
a wide range of socio-cultural demographic characteristics.

Over the past decade, various real-world, in-the-wild datasets have been pro-
posed using web-scraped/crowd-sourced images. A crucial drawback of employ-
ing such a data-driven method for expression recognition lies in its susceptibility
to biases present in the datasets, particularly those that disproportionately affect
⋆ Supported by Kwikpic AI Solutions.
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specific demographic groups.[3, 11]. Facial Expression Recognition requires hu-
man annotations per image, which propagates annotative biases and prejudices.
Moreover, most real-world in-the-wild datasets lack proportionate representa-
tion of different demographic attributes such as race, age, and gender. Another
crucial factor contributing to bias in FER datasets is crowd-sourced annotation.
Each annotator possesses their own bias with respect to understanding facial ex-
pressions in varied demographics. However, given the enormous size of datasets,
these biases are often assumed to be components of random noise.[2, 47].

In practice, however, people may harbour systematic and demographic biases,
especially when inadequately trained with proper demographic and psychological
knowledge; they may incorporate such biases into their annotations [6]. Bias is
defined as systematic mistakes that result in unjust outcomes during a decision-
making process. In the realm of deep learning, this can originate from multiple
factors, such as data collection methodology, algorithm design, and biased human
annotation [7]. A deep learning model trained on such datasets would inherently
propagate bias, thus making it unfair. Fairness in the context of deep learning
refers to the absence of bias or discrimination in deep learning systems; however,
achieving it can be difficult since deploying a real-world deep learning solution
can propogate biases that can emerge in such systems.

Annotative biases combined with class and demographic imbalances increase
bias and reduce equal-odds fairness for attributes such as gender, ethnicity, etc.
Therefore, examining the biases within datasets and designing algorithms to mit-
igate them becomes crucial. Considering age as a protected attribute in datasets,
we observe that adolescents are represented positively (such as happy) [6]; on the
contrary, senior citizens are represented more negatively (such as sad and dis-
gusted). This causes models to be biased, with adolescents being classified more
frequently to positive expressions, viz-a-viz, and senior citizens being predicted
to negative expressions.

Bias analysis and its mitigation strategies have gained good traction among
researchers working in the facial analysis domain. However, in the FER domain,
this is a relatively less explored area [34, 42]. This work is our attempt to tackle
and mitigate this bias, therefore increasing fairness in a deep learning model.
The major contributions of this work include:

– A novel latent alignment technique with an architecture that generates im-
proved latent representations, mitigates bias, and improves accuracy for
FER.

– A novel training technique and loss function that uses Variational Autoen-
coders and an adversarial discriminator with perceptual loss for bias mitiga-
tion and a CNN backbone for expression classification.

– Conducting extensive evaluation on two commonly used datasets (RAF-DB
[26] and CelebA[28]) and multiple protected attributes in both separate and
combined techniques, mitigating bias towards gender, race, and age, setting
new state-of-the-art results and competitive performance.

This paper is an extended version of our Student Abstract published at AAAI-
24[35], which, to the best of our knowledge, is the first attempt to explore repre-
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sentation learning using latent spaces in mitigating biases in the facial expression
domain. This paper provides more comprehensive experimentation with an ad-
ditional dataset (CelebA[28]), detailed results on the interplay between different
protected attributes, and better insights into our methodology and training ap-
proach.
The rest of the paper is organised as follows: Section 2 discusses some recent
notable works in bias mitigation. Section 3 describes the methodology adopted,
including the training methodology, loss functions, and classification model em-
ployed. Section 4 presents our experimental results, the evaluation metric and
analysis of datasets. Section 5 provides a component-wise ablation study of our
proposed architecture. Section 6 concludes the work and presents directions for
future work.

2 Recent Works

Bias in Machine learning has attracted wider attention in recent years, with
the rapid growth in the deployment of real-world machine learning applications.
Extensive surveys[29, 17, 9, 32] have been done to study bias and its mitigation
strategies. In this section, we discuss some of the notable methods for mitigat-
ing biases. In literature[9] three types of bias mitigation strategies have been
discussed, namely, pre-processing, in-processing, and post-processing methods.

Pre-processing Methods: Calmon et al. [4] proposed an optimized pre-processing
strategy that modifies the data features and labels. Zemel et al. [43] proposed a
mitigation strategy that learns fair representations by formulating fairness as an
optimization problem of finding good representations of the data while obfus-
cating any information about membership in the protected group. Feldman et
al. [14] proposed disparate impact remover, where feature values were modified
while preserving rank ordering to improve overall fairness.

In-processing: Kamishima et al. proposed a prejudice remover mechanism
[23] that leverages a discrimination-aware regularization approach to the learn-
ing objective that can be applied to any prediction algorithm with probabilistic
discriminative models. Zhang et al. [45] proposed a strategy that learns fair rep-
resentations by including a variable for the group of interest and simultaneously
learning a predictor and an adversary. Meta Fair Classifier [5] proposes a meta-
algorithm for classification that takes fairness constraints as input and returns
an optimised classifier.

Post-processing: Reject option Classification [22] presents a discriminative
aware classification, which essentially aims at the prediction that carries a higher
degree of uncertainty and thereby assigns favourable outcomes to unprivileged
groups and unfavourable outcomes to privileged groups. The strategy of cali-
brated equalized odds [33] is designed to optimise the calibrated classifier score
outputs. Its goal is to identify probabilities that can be used to alter output
labels while maintaining an objective of equalized odds.

Some other techniques to tackle dataset bias include transfer learning[31],
adversarial mitigation[46, 39], and domain adaptation [36–38]. Various strategies
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have been proposed to eliminate or prevent models from acquiring misleading
or unwanted correlations. A post-hoc correction technique [15] that imposes an
equality of odds constraint on previously learnt predictor. In the domain of deep
learning, two popular techniques are the tweaking of loss functions to impose
penalties on unfairness[1], and adversarial learning [45, 20, 30]. These techniques
aim to learn a fair representation that is devoid of any information related to
protected attributes.

Bias mitigation in Facial Expression Recognition: Bias mitigation in
facial expression recognition is a relatively less-explored area. With the exponen-
tial increase in computing capabilities over the past decade, many datasets and
algorithms have been proposed for automatically recognizing facial expressions.
However, most of these in the wild real-world datasets are either web-scraped
or crowd-sourced. These datasets often have two major limitations [25]. Firstly,
most datasets have class imbalances; i.e. people with varied socio-cultural-ethnic
identities are inadequately represented among various classes. Secondly, since
these large numbers of scraped images are manually labelled by a group of an-
notators, a personal bias is inherently a part of the dataset.

Some of the existing works that have tackled bias and it’s mitigation in
facial expression recognition include a facial Action Unit (AUs) calibrated FER
approach [8], an attribute aware and a disentangled method [42]. Zeng et al.
[44] proposed a Meta-Face2Exp framework that utilized large unlabelled facial
recognition datasets.

3 Methodology

We propose a two-part model for mitigating bias. Recognizing that CNNs tend
to learn from all input features, for the first part of the model we propose a
Variational Autoencoder (VAE) to encode the images into a latent space. The
images corresponding to each protected attribute in the dataset will each have
a corresponding latent space. Our goal is to minimize the distance between
these latent spaces so that each latent encodes only the information relevant
to expression classification. We propose to utilize a Variational Autoencoder
with shared weights for all protected attributes where the inter-latent domain
gap is reduced using an adversarial discriminator. We denote the Encoder part
as E and the Generator part as G. We introduce a two-part model to address
bias mitigation. Given CNNs’ propensity to assimilate all input features, our
initial model component employs a Variational Autoencoder (VAE) to encode
images belonging to protected attributes into the common latent space. The
goal is to minimise disparities between these latent spaces, ensuring they contain
information relevant to expression classification.
Summarising the methodology:

– The main cause of bias is that models tend to learn protected attributes as
features.

– Our model solves this by generating a latent that has forgotten the protected
attribute.
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Fig. 1. Architecture for Attribute Disentanglement. Li represents data having the at-
tribute qi. ZLi is the latent representation of Li. ELi is a VAE with shared weights ∀i.
’E’ refers to the Encoder module, which compresses the input image into a latent that
does not contain information about the protected attribute. ’G’ refers to the Generator,
which is a reconstruction module that converts the latent back to the original image.

– This is done by overlapping the latent spaces of data points belonging to
different protected attributes; this overlap is done using the discriminator.

Attribute Disentanglement - We propose a shared-weight Variational
Autoencoder across all protected attributes, mitigating inter-latent domain dis-
parities through an adversarial discriminator. In this context, we denote the
Encoder and Generator components as ‘E’ and ‘G’. This is demonstrated in Fig.
3, where qi is a protected attribute such as gender.

LVAE(x) =KL (zx | x) ∥N (0, I)) + LLatent
VAE,D(x)

+ α
∥∥∥Gϕ

j (ŷ)−Gϕ
j (y)

∥∥∥2
F

(1)

Equation 1 is the objective function for the VAE. The first component consists
of KL-divergence that penalizes deviation of the latent distribution from a Gaus-
sian Distribution. The second component is discriminator loss, which measures
whether the discriminator can predict the protected attribute class. The final
component is Style-Reconstruction Loss [21].

Classification Model We feed the latent representation generated by E into
a custom classification module using MBConv[18] blocks. This is demonstrated
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in Fig. 2.
min

EXi
,GXi

max
DXi

= LVAE(x) + Llatent
VAE,D(xqi) ∀q (2)

Training Method The Encoder and the Discriminator are trained jointly with
a min-max objective function (Equation 2) with a categorical cross-entropy loss
for the Discriminator. The classification model is trained after the VAE with a
symmetric cross-entropy loss for robustness.

Training Configuration The training was conducted on 2 NVIDIA Tesla
V100s with 32 GB of GPU memory. A Stochastic Gradient Descent Optimizer
with a learning rate set to 0.0001 and momentum set to 0.9 was used. Hyper-
parameter α from LV AE from Equation 1 in the paper was set to 10 after grid
search.

RAF-DB [26] provides images resized to 128x128 pixels. We applied basic aug-
mentations to our dataset, including horizontal flips with a probability of 50%
and random rotations by a maximum angle of 15°.

Loss Functions The proposed model has a novel loss function (Equation1),
which consists of three parts. The first part is the KL Divergence between the
latent and a sample from a Gaussian distribution with mean 0 and variance 1
according to [24]. This is used to provide denser representations in the latent
space, improving accuracy and mitigating bias (as shown later in Section 5).
The second component is the loss from the discriminator’s ability to predict
the protected attribute accurately. The Encoder’s goal is to be able to fool the
discriminator into not knowing the protected attribute. This is the main com-
ponent that aligns the latent spaces and ensures the Encoder does not learn the
protected attribute features.
The final component is the Style-Reconstruction Loss from [21], which is added
to ensure that the semantic emotion-level features are not lost on the Genera-
tor’s reconstruction of the image. This is used instead of a pixel-wise loss because
expression is a subjective concept, and a pixel-wise loss does not necessarily rep-
resent semantic consistency.

Gϕ
j (x)c,c′ =

1

CjHjWj

Hj∑
h=1

Wj∑
w=1

ϕj(x)h,w,cϕj(x)h,w,c′ (3)

Equation 3 is the Gram matrix of the jth feature map for a network ϕ where
ϕj(x) represents the activations of the jth layer of the network. The final loss is
the squared Frobenius norm of the input and output feature matrices.
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Fig. 2. Classification backbone uses the latent representation generated by the encoder
to classify into the 7 emotions.

Classification Model: We have used 3 sequential MBConv [19] modules which
use the latent representation generated by the Latent Alignment VAE and clas-
sify it into the seven basic expressions. The MBConv block has been extensively
explored in many areas of deep learning and is a versatile and efficient building
block. We have also experimented with using Residual Blocks [16] and found
that they have a minor reduction in accuracy (described further in Section 5).

4 Experminenation, Results, and Analysis

4.1 Evaluation Metric

We formulate our metric for fairness as [42] and use the “equal odds” philosophy.

F = min(

∑C
c=1 p (ŷ = c | y = c, q = qi,x)∑C
c=1 p(ŷ = c | y = c, q = d,x)

. (4)

∀i ∈ (1, 2....N)

In equation 4, "d" is the protected attribute that has the highest accuracy. We
add the accuracy for each class per attribute and use the minimum value as
our metric for fairness. For completeness, we also use the mean per-class per-
attribute accuracy as in [40].
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4.2 Experimentation and Analysis

Experimentation was conducted on the RAF-DB [26] and CelebA [28] datasets
similar to [42]. The RAF-DB dataset has 7 human-annotated classes. The model
is trained on the provided train-test split consisting of 12271 train images, and
inference is run on 3068 test images. Table 1 and Table 5 show that our model
achieves state-of-the-art results on RAF-DB for both metrics and demonstrates
significant bias mitigation.
Our methodology and setup is based on the hypothesis that protected attributes
can be forgotten without information loss of other facial attributes. Ideally, a
network would be able to perfectly distinguish attributes if these attributes were
completely separable from the rest of the informative features of the image. How-
ever, since they are not, we hypothesize that if subsets of a dataset partitioned
on the basis of the protected attribute are aligned or brought closer in a latent
space, these attributes are considered to be forgotten.
To achieve this, we use a discriminator module to classify the latents into their
respective protected attributes. When this discriminator cannot determine mem-
bership of a latent into a particular protected attribute subset, then fairness can
be achieved since the classification would be done solely on the basis of a latent
which does not contain information about the protected attribute.

Table 1. Comparison of expression-wise accuracies on RAF-DB.

Expression Accuracy(%)
Xu et al. Ours

Anger 81.0 83.2
Disgust 54.1 57.7
Fear 53.8 60.2
Happy 93.3 92.0
Neutral 82.1 81.0
Sad 77.7 76.0
Surprise 81.8 82.9
Mean 74.8 76.1

Table 2. Mean class-wise accuracy broken down by Gender and Race attributes on
RAF-DB.

Attribute Labels Mean Class wise Accuracies
Xu et al. Offline[10] Focal Loss[27] DDC[12] DIC[41] SS[13] Ours

Male 74.2 72.0 71.0 71.0 72.0 72.0 76.3
Female 74.4 75.0 75.0 74.0 75.0 76.0 76.0

Caucasian 75.6 74.0 73.0 72.0 74.0 74.0 76.15
African-American 76.6 76.0 75.0 73.0 76.0 75.0 77.1

Asian 70.4 76.0 75.0 74.0 77.0 76.0 75.5
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Fig. 3. Data Distribution of the test test of RAF-DB. (a) represents the gender-wise
distribution, (b) represents the age group distribution, and (c) represents the ethnic
distribution of the test set of RAF-DB.

RAF-DB Bias Analysis. Most FER datasets do not have the respective age,
gender, and ethnic labels; therefore, to substantiate our results, we conducted
experiments on RAF-DB [26], one of the most popular benchmark FER datasets.
RAF-DB contains 15,339 images of diverse facial expressions downloaded from
the internet and annotated manually by crowd-sourcing and reliable estimation;
this dataset consists of seven basic expressions and eleven compound expressions.

RAF-DB provides labels that include expression, gender type, ethnicity, and
age group. Fig. 3 showcases the attribute-wise breakdown of each label class in
the test data. Since the distribution of test and training data is kept similar, we
can draw few inferences from this distribution.

– Considering "race" as an attribute, we observe that almost 77% of the images
belong to a single class i.e. Caucasian, rest, 23% are then distributed among
two attributes, namely African-American and Asian.

– Similarly, for the age attribute, almost 57% of the images belong to one of
the five age brackets, namely {20-39}. The rest of the 43% of images are
distributed among the remaining four classes. Moreover, senior citizens from
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Table 3. Mean class-wise accuracy broken down by Age and Gender-Race attributes
on RAF-DB.

Attribute Labels Mean Class wise Accuracies
Xu et al. Ours

0-3 80.2 82.4
4-19 69.9 72.3
20-39 76.4 77.0
40-69 74.4 75.7
70+ 62.2 70.1

M-Caucasian 74.5 76.0
M-African-American 80.2 81.1

M-Asian 70.2 73.4
F-Caucasian 75.5 76.2

F-African-American 87.6 81.1
F-Asian 69.0 71.7

the 70+ age bracket and infants from {0-3} age bracket are highly under-
represented, consisting of about 3% and 5% of the total images, respectively.

– Observing the expression attribute, we can infer that 39.7% of the total im-
ages belong to one of the seven expression classes, i.e. happy; the rest of the
six classes are then distributed among the remaining six expressions. More-
over, expressions like fear, disgust and surprise are highly under-represented,
consisting of about 2.7%, 5% and 10% of the total images, respectively.

Table 4. Comparison of mitigation of bias (higher is better) on RAF-DB broken down
by attribute labels.

Protected attributes Mitigation of Bias
Xu et al.[42] Offline[10] Focal Loss[27] DDC[12] DIC[41] SS[13] Ours

Gender 99.97 95.4 96.1 96.2 95.4 95.4 99.51
Race 91.9 97.4 97.2 97.6 96.5 97.5 94.2
Age 82.1 - - - - - 84.8

This further substantiates our claim and establishes the need to mitigate bias
in most FER datasets. The expression accuracy shown in Table 1 does not suf-
ficiently portray the performance variation of classifiers across different demo-
graphics; therefore, in Table 2,3, we comprehensively compare accuracies broken
down by each demographic group. Furthermore, to substantiate the inter-play of
"gender" and "race" attributes we also provide results of joint "Gender-Race"
groups in Table 3. From Table 2,3 it can be inferred, that our proposed method
outperforms for mean class-wise accuracies broken down by attributes "age",
"gender", "race" and "gender-race".To provide a numerical assessment of miti-
gation of bias for sensitive attributes such as age, gender, and race, in Table 4,
we provide comparisons with [42, 10, 27, 12, 41, 13] using our evaluation metric
for fairness (using Equation 4). From Table 4 we can infer that with regards
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to bias mitigation, our approach performs almost at par with Xu et al. [42] for
"gender" attribute, whereas for "age" class it outperforms [42].

Table 5. Comparison of accuracy broken down by smiling attribute on CelebA dataset.

Expression Accuracy
Xu et al. [42] Ours

Smiling 92.2 92.9
Not-Smiling 94.1 94.8

Mean 93.15 93.85

Table 6. Mean class-wise accuracy broken down by attributes on CelebA.

Attribute Labels Mean Class-wise Accuracy
Xu et al.[42] Ours

Female 93.6 94.5
Male 91.9 93.4
Old 91.6 92.5

Young 93.6 94.3
Female-Old 92.7 93.3

Female-Young 93.8 94.9
Male-Old 90.7 92.1

Male-Young 92.8 93.7

CelebA Bias Analysis
We conduct experimentation for images in CelebA for the binary attribute of
"smiling". This is done to facilitate the expression recognition of happy. We use
the CelebA dataset since it is much larger as compared to RAF-DB with 39920
images in a subset of CelebA as compared to 12271 in all of RAF-DB. The pro-
tected attributes we use for fairness are Gender and Age.
The Smiling/No Smiling attribute is evenly distributed with exactly 50% of the
images having the smiling attribute. The image distribution for Gender and Age
are not evenly distributed, with a 22.8% gap between the number of Male and
Female images, and a 51.4% gap between the number of Young and Old images.
The comparison of accuracies with "Smiling" vs "No Smiling" is shown in Table
5. Since this is a simple binary classification task, accuracies are almost compara-
ble. Table 6 provides comparable class-wise (i.e. "Smiling" vs "No Smiling") ac-
curacies broken down by attribute labels ("gender", "age", and "Gender-Age").
Table 7 provides comparisons with [42] using our evaluation metric for fairness
(using Equation 4) on sensitive attributes.
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Table 7. Comparison of mitigation of bias (higher is better) on CelebA broken down
by attribute labels.

Protected Attribute Mitigation of Bias
Xu et al.[42] Ours

Gender 98.3 99.1
Age 98.1 98.9

Gender-Age 96.9 98.0

5 Ablation Study

Table 8. Component-wise Ablation Study of our model.

Component Mean Accuracy Bias (Gender) Bias (Race)

VAE+MBConv+Discriminator (Ours) 76.1 99.93 94.2

Auto Encoder+Discriminator+MBConv 74.2 97.6 91.2

VAE+Discriminator+ResBlock 74.5 99.91 93.8

VAE+MBConv 76 91.4 79.2

VAE+ResBlock 73 91 79.3

We demonstrate the importance and effectiveness of each technical contribu-
tion through this ablation study on RAF-DB [26]. We first look at the impact
of using a Variational Autoencoder as compared to a standard Autoencoder or
other dimensional reduction techniques. We can see a significant drop in accu-
racy and a corresponding drop in bias mitigation when an Autoencoder is used
in place of a VAE. We believe this is due to the ability of VAEs to generate
denser representations due to the KL-Divergence loss from the Gaussian distri-
bution present in VAEs.

We further look at the impact of the Discriminator module on latent space
alignment and examine whether it increases fairness. From Table 8, we see that
there is a significant decrease in bias mitigation when the VAE is trained with-
out the min-max objective jointly with the discriminator. This demonstrates
that the Discriminator is highly impactful for latent space alignment and that
the sensitive attributes are encoded in the latent without it.
We further analyze the impact of the CNN classifier backbone on accuracies.
We find that the MBConv block[18] performs superior as compared to Res-
Block [16]. In recent works, MBConv blocks have been known for their superior
expressive power in CNNs. MBConv outperforms ResBlocks given all other pa-
rameters remain the same. However, this difference is minimal given that the
largest contributor to our model is the VAE+Discriminator architecture for la-
tent alignment.
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6 Conclusion

With the exponential increase of real-world artificial intelligence systems de-
ployed in our daily lives, accounting for fairness has become a crucial factor in the
design and research of such systems. AI systems can be deployed in various criti-
cal settings to make important life-changing decisions; hence, ensuring that these
decisions do not exhibit bias or discriminatory behaviour against specific groups
or demographics is of utmost importance. As a result, bias mitigation investiga-
tion and its mitigating strategies have gained good traction among researchers.
Recently, many works have proposed bias mitigation strategies through tradi-
tional machine learning and deep learning in various subdomains; however, this
is a relatively less-explored area in facial expression recognition. In this work, we
propose a new method for mitigating bias in FER systems by using a Variational
Autoencoder with an Adversarial Discriminator followed by an MBConv-based
classification module. We surpass the results presented [42] and provide an adapt-
able framework that can be extended to other image classification tasks. To the
best of our knowledge, this is the first work that uses latent alignment for de-
biasing in FER systems. We hope that our work will pave the way for a more
extensive exploration of latent space manipulation for bias reduction in a wider
range of image classification scenarios.
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